Code: 20IT2601A

III B.Tech - II Semester – Regular / Supplementary Examinations APRIL 2024

INTRODUCTION TO DATA MINING

(Common to All Branches)

Duration: 3 hours

Note: 1. This paper contains questions from 5 units of Syllabus. Each unit carries 14 marks and have an internal choice of Questions.

2. All parts of Question must be answered in one place.

BL – Blooms Level CO – Course Outcome

			BL	СО	Max. Marks				
	UNIT-I								
1	a)	What is data warehouse? How is it differs	L2	CO1	4				
		from DBMS.							
	b)	Describe the various phases in knowledge	L2	CO1	10				
		discovery process with a neat diagram.							
2	a)	Define Data Mining? Explain applications	L2	CO1	5				
		of data mining.							
	b)	Explain data mining functionalities.	L2	CO1	9				
UNIT-II									
3	a)	What is data cleaning? What are the	L3	CO2	7				
		different techniques for handling missing values?							

Max. Marks: 70

	b)	Discuss about any two measures of	L3	CO2	7
		similarity.			
		OB			
1	T :	OR	ТЭ	COD	1 /
4	List	L. L	L2	CO2	14
	stra	tegies.			
		UNIT-III			
5	a)	Can we overcome the draw backs of Apriori	L2	CO3	6
5	<i>u)</i>	algorithm? Discuss.			Ũ
	b)	Explain the methods of Frequent Itemset	L3	CO3	8
	- /	Generation and Rule Generation.			-
		OR			
6	Illu	strate the frequent itemset generation using	L3	CO3	14
	the	Apriori algorithm.			
		UNIT-IV			
7	Exp	plain decision tree induction algorithm for	L3	CO3	14
	clas	ssifying data tuples with suitable example.			
		OR			
8	a)	Discuss about metrics for evaluating	L3	CO3	7
		classifier performance.			
	b)	Illustrate about Rule Induction using a	L3	CO4	7
		Sequential covering algorithm with an			
	1	example.			

UNIT-V							
9	Wh	at are the advantages and disadvantages of	L3	CO3	14		
	k-m	neans clustering against model based					
	clus	stering? You are given a set of numbers					
	{2,	3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377}.					
	Use the following techniques to find two clusters						
	from this data set.						
	(i)	K-Means with initial centroids {1} and					
	{37	8}					
	(ii)	K-Means with initial centroids {21} and					
	{34	·}.					
OR							
10	a)	Compare K-Means with Agglomerative	L3	CO4	7		
		Hierarchical Clustering.					
	b)	Define Clustering. Explain about types of	L2	CO4	7		
		Data in Cluster Analysis.					